TY - JOUR
T1 - Specimen size effect of explosive sensitivity under low velocity impact
AU - Ma, Danzhu
AU - Chen, Pengwan
AU - Dai, Kaida
AU - Zhou, Qiang
PY - 2014
Y1 - 2014
N2 - Low velocity impact may ignite the solid high explosives and cause undesired explosion incidents. The safety of high explosives under low velocity impact is one of the most important issues in handling, manufacture, storage, and transportation procedures. Various evaluation tests have been developed for low velocity impact scenarios, including, but not limited to the drop hammer test, the Susan test, the Spigot test, and the Steven test, with a charge mass varying from tens of milligrams to several kilograms. The effects of specimen size on explosive sensitivity were found in some impact tests such as drop hammer test and Steven tests, including the threshold velocity/height and reaction violence. To analyse the specimen size effects on explosive sensitivity under low velocity impacts, we collected the impact sensitivity data of several PBX explosives in the drop hammer test, the Steven test, the Susan test and the Spigot test. The effective volume of explosive charge and the critical specific mechanical energy were introduced to investigate the size-effect on the explosive reaction thresholds. The effective volumes of explosive charge in Steven test and Spigot test were obtained by numerical simulation, due to the deformation localization of the impact loading. The critical specific mechanical energy is closely related to the effective volume of explosive charge. The results show that, with the increase of effective volume, the critical mechanical energy needed for explosive ignition decreases and tends to reach a constant value. The mechanisms of size effects on explosive sensitivity are also discussed.
AB - Low velocity impact may ignite the solid high explosives and cause undesired explosion incidents. The safety of high explosives under low velocity impact is one of the most important issues in handling, manufacture, storage, and transportation procedures. Various evaluation tests have been developed for low velocity impact scenarios, including, but not limited to the drop hammer test, the Susan test, the Spigot test, and the Steven test, with a charge mass varying from tens of milligrams to several kilograms. The effects of specimen size on explosive sensitivity were found in some impact tests such as drop hammer test and Steven tests, including the threshold velocity/height and reaction violence. To analyse the specimen size effects on explosive sensitivity under low velocity impacts, we collected the impact sensitivity data of several PBX explosives in the drop hammer test, the Steven test, the Susan test and the Spigot test. The effective volume of explosive charge and the critical specific mechanical energy were introduced to investigate the size-effect on the explosive reaction thresholds. The effective volumes of explosive charge in Steven test and Spigot test were obtained by numerical simulation, due to the deformation localization of the impact loading. The critical specific mechanical energy is closely related to the effective volume of explosive charge. The results show that, with the increase of effective volume, the critical mechanical energy needed for explosive ignition decreases and tends to reach a constant value. The mechanisms of size effects on explosive sensitivity are also discussed.
UR - http://www.scopus.com/inward/record.url?scp=84902338730&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/500/5/052026
DO - 10.1088/1742-6596/500/5/052026
M3 - Conference article
AN - SCOPUS:84902338730
SN - 1742-6588
VL - 500
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - PART 5
M1 - 052026
T2 - 18th Biennial Int. Conf. of the APS Topical Group on Shock Compression of Condensed Matter, APS-SCCM 2013 in Conjunction with the 24th Biennial Int. Conf. of the Int. Association for the Advancement of High Pressure Science and Technol., AIRAPT 2013
Y2 - 7 July 2013 through 12 July 2013
ER -