Spatial Enhanced-SSD for Multiclass Object Detection in Remote Sensing Images

Guanqun Wang, Yin Zhuang*, Zhiru Wang, He Chen, Hao Shi, Liang Chen

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Accurate multiclass object detection in remote sensing images is a challenging task, especially for small objects. since the scales of objects in remote sensing images have a great variance, almost all of the advanced detection methods have shortcomings. Consequently, improving the accuracy of multiclass objects detection has always been the direction of researchers' efforts. In this paper, a spatial enhanced-Single Shot MultiBox Detector (SE-SSD) is proposed. First, to enhance the spatial information, we enlarge the input image channels with embedding oriented-gradients feature maps. Second, the multiple output layers in the backbone network are changed to reduce one pooling operation. Finally, we design a context module to enhance the receptive field for feature layer description in SE-SSD framework. Experimental results on DOTA dataset demonstrate that Spatial Enhanced-SSD method reaches a much higher mean average precision (mAP) than Faster R-CNN, SSD and other classic detection network.

源语言英语
主期刊名2019 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
318-321
页数4
ISBN(电子版)9781538691540
DOI
出版状态已出版 - 7月 2019
活动39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Yokohama, 日本
期限: 28 7月 20192 8月 2019

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)

会议

会议39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019
国家/地区日本
Yokohama
时期28/07/192/08/19

指纹

探究 'Spatial Enhanced-SSD for Multiclass Object Detection in Remote Sensing Images' 的科研主题。它们共同构成独一无二的指纹。

引用此