TY - JOUR
T1 - Solving most systems of random quadratic equations
AU - Wang, Gang
AU - Giannakis, Georgios B.
AU - Saad, Yousef
AU - Chen, Jie
N1 - Publisher Copyright:
© 2017 Neural information processing systems foundation. All rights reserved.
PY - 2017
Y1 - 2017
N2 - This paper deals with finding an n-dimensional solution x to a system of quadratic equations yi = |«ai, x»|2 1 ≤ i ≤ m, which in general is known to be NP-hard. We put forth a novel procedure, that starts with a weighted maximal correlation initialization obtainable with a few power iterations, followed by successive refinements based on iteratively reweighted gradient-type iterations. The novel techniques distinguish themselves from prior works by the inclusion of a fresh (re)weighting regularization. For certain random measurement models, the proposed procedure returns the true solution x with high probability in time proportional to reading the data {(ai; yi)}1≤i≤m, provided that the number m of equations is some constant c > 0 times the number n of unknowns, that is, m ≥ cn. Empirically, the upshots of this contribution are: i) perfect signal recovery in the high-dimensional regime given only an information-theoretic limit number of equations; and, ii) (near-)optimal statistical accuracy in the presence of additive noise. Extensive numerical tests using both synthetic data and real images corroborate its improved signal recovery performance and computational efficiency relative to state-of-the-art approaches.
AB - This paper deals with finding an n-dimensional solution x to a system of quadratic equations yi = |«ai, x»|2 1 ≤ i ≤ m, which in general is known to be NP-hard. We put forth a novel procedure, that starts with a weighted maximal correlation initialization obtainable with a few power iterations, followed by successive refinements based on iteratively reweighted gradient-type iterations. The novel techniques distinguish themselves from prior works by the inclusion of a fresh (re)weighting regularization. For certain random measurement models, the proposed procedure returns the true solution x with high probability in time proportional to reading the data {(ai; yi)}1≤i≤m, provided that the number m of equations is some constant c > 0 times the number n of unknowns, that is, m ≥ cn. Empirically, the upshots of this contribution are: i) perfect signal recovery in the high-dimensional regime given only an information-theoretic limit number of equations; and, ii) (near-)optimal statistical accuracy in the presence of additive noise. Extensive numerical tests using both synthetic data and real images corroborate its improved signal recovery performance and computational efficiency relative to state-of-the-art approaches.
UR - http://www.scopus.com/inward/record.url?scp=85046061133&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85046061133
SN - 1049-5258
VL - 2017-December
SP - 1868
EP - 1878
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 31st Annual Conference on Neural Information Processing Systems, NIPS 2017
Y2 - 4 December 2017 through 9 December 2017
ER -