Sodium-Based Concave Metasurfaces for High Performing Plasmonic Optical Filters by Templated Spin-on-Sodiophobic-Glass

Yuhan Yang, Hanyu Fu, Huanhuan Su, Shuying Chen, Shan Wu, Jie Liang, Tianqi Wei, Yang Wang, Shining Zhu, Jia Zhu*, Lin Zhou*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

6 引用 (Scopus)

摘要

Optical filters have aroused tremendous excitement in advanced photonic instruments and modern digital displays due to their flexible capability of spectrum manipulation. Plasmonic metasurfaces of narrow bandwidth, high spectral contrast, and robust structure tolerance are highly desired for optical filtration (especially in the visible regime) but rather challenging as large spectral broadening from intrinsic ohmic loss and design/fabrication deviations. Here the high-performing sodium-based metasurfaces are demonstrated for optical filtration across 450 to 750 nm by unique structure design of spatially decoupled concave surfaces and precise fabrication through templated solidification of liquid metals. Thanks to the distinct suppression of metallic loss as well as fabrication tolerance of interfacial structures, the as-prepared concave metasurfaces enable a minimum linewidth of ≈15 nm, a maximal optical contrast of ≈93%, and a high measure-to-design spectral match ratio ≈1500. These results have for the first time pushed the operation wavelengths of sodium-based plasmonic devices from infrared to visible which in turn demonstrates the capability of filling the blank of commercial dielectric optical filters thus far.

源语言英语
文章编号2300272
期刊Advanced Materials
35
25
DOI
出版状态已出版 - 22 6月 2023
已对外发布

指纹

探究 'Sodium-Based Concave Metasurfaces for High Performing Plasmonic Optical Filters by Templated Spin-on-Sodiophobic-Glass' 的科研主题。它们共同构成独一无二的指纹。

引用此