Sobolev spaces adapted to the Schrödinger operator with inverse-square potential

R. Killip*, C. Miao, M. Visan, J. Zhang, J. Zheng

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

57 引用 (Scopus)

摘要

We study the Lp-theory for the Schrödinger operator La with inverse-square potential a| x| - 2. Our main result describes when Lp-based Sobolev spaces defined in terms of the operator (La)s/2 agree with those defined via (- Δ) s/2. We consider all regularities 0 < s< 2. In order to make the paper self-contained, we also review (with proofs) multiplier theorems, Littlewood–Paley theory, and Hardy-type inequalities associated to the operator La.

源语言英语
页(从-至)1273-1298
页数26
期刊Mathematische Zeitschrift
288
3-4
DOI
出版状态已出版 - 1 4月 2018

指纹

探究 'Sobolev spaces adapted to the Schrödinger operator with inverse-square potential' 的科研主题。它们共同构成独一无二的指纹。

引用此