Smooth and Accurate LiDAR-GNSS-IMU Localization Method with Confidence Estimation

Chao Ban, Kefan Zheng, Hao Fang, Yu Bai*, Xin Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

In this work, we present a multi-sensor fusion based localization framework for robots in both indoor and outdoor environment. This work aims to utilize the advantages of LiDAR, GNSS and IMU sensors in order to achieve the best state estimation in varied environments. The proposed frame work is composed of two parts: feature-based LiDAR simultaneous localization and mapping (SLAM) and filter-based state estimation. We first establish a priori point cloud map based on LiDAR SLAM, and ensure the consistency of the coordinate system by adding GNSS constraints in the back-end optimization. And then, we online estimate the current optimal pose of the robot based on the Extended Kalman Filter(EKF) framework, and design a GNSS confidence estimation method based on point cloud residuals to avoid the interference of multipath effect and other errors on the pose estimation. Simulation and experiment results show that this framework has a good performance on confidence estimation and improves the accuracy of localization results.

源语言英语
主期刊名2023 42nd Chinese Control Conference, CCC 2023
出版商IEEE Computer Society
4213-4219
页数7
ISBN(电子版)9789887581543
DOI
出版状态已出版 - 2023
活动42nd Chinese Control Conference, CCC 2023 - Tianjin, 中国
期限: 24 7月 202326 7月 2023

出版系列

姓名Chinese Control Conference, CCC
2023-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议42nd Chinese Control Conference, CCC 2023
国家/地区中国
Tianjin
时期24/07/2326/07/23

指纹

探究 'Smooth and Accurate LiDAR-GNSS-IMU Localization Method with Confidence Estimation' 的科研主题。它们共同构成独一无二的指纹。

引用此