Small-scale experimental study of microevolutionary processes and dynamics of CO2-N2 mixtures before BLEVE

Chuang Liu, Zhenyi Liu*, Mingzhi Li, Yanan Li, Pengliang Li, Yao Zhao, Qiqi Liu, Changqi Liu, Zihao Xiu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

CCS technology involves carbon capture, where the captured CO2 contains N2 impurities and there is a risk of Boiling Liquid Expanding Vapor Explosion (BLEVE) in the high-pressure CO2-N2 mixtures vessel. Therefore, in this paper, we experimentally investigated the jet structure and boiling nucleation microevolution process after the sudden release of high-pressure CO2-N2 mixtures in a pressure vessel and discussed the effects of rupture disc diameter, and N2 molar ratio on the dynamic pressure before the startup of BLEVE. The results show that under-expanded jets are experimentally observed due to the Joule-Thompson effect. The boiling and nucleation microevolution is divided into six main stages, in the second of which the boiling expansion of the liquid and the “backfilling” of the gas leads to a dynamic pressure peak greater than the initial pressure, and BLEVE starts to occur. In the experiments, the dynamic pressure peaks were larger at 8 mm rupture disc diameter and 8 mol% N2, BLEVE did not occur at 15 mm, and N2 content below 5 mol% had less effect on the dynamic pressure behavior. This study provides a preliminary investigation of the pre-BLEVE behavior of CO2-N2 mixtures and provides theoretical support for risk prevention.

源语言英语
页(从-至)286-295
页数10
期刊Process Safety and Environmental Protection
185
DOI
出版状态已出版 - 5月 2024

指纹

探究 'Small-scale experimental study of microevolutionary processes and dynamics of CO2-N2 mixtures before BLEVE' 的科研主题。它们共同构成独一无二的指纹。

引用此