摘要
We propose a single phonon source based on nitrogen-vacancy (NV) centers, which are located in a diamond phononic crystal resonator. The strain in the lattice would induce the coupling between the NV centers and the phonon mode. The strong coupling between the excited state of the NV centers and the phonon is realized by adding an optical laser driving. This four-level NV center system exhibits coherent population trapping and yields giant resonantly enhanced acoustic nonlinearities, with zero linear susceptibility. Based on this nonlinearity, the single phonon source can be realized. We numerically calculate g20 of the single phonon source. We discuss the effects of the thermal noise and the external driving strength.
源语言 | 英语 |
---|---|
页(从-至) | 1163-1166 |
页数 | 4 |
期刊 | Optics Letters |
卷 | 43 |
期 | 5 |
DOI | |
出版状态 | 已出版 - 1 3月 2018 |
已对外发布 | 是 |