Simultaneous magnetic field and temperature measurement with high resolution based on cascaded microwave photonic filters

Naihan Zhang, Muguang Wang*, Pufeng Gao, Mengyao Han, Bin Yin, Shiyi Cai, Beilei Wu, Yan Liu, Desheng Chen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

A simultaneous magnetic field and temperature sensing scheme based on cascaded microwave photonic filters (MPFs) with high resolution is proposed and experimentally demonstrated. A polarization maintaining fiber bonded with a giant magnetostrictive material acts both as a magnetic field sensing probe and an important unit of a dispersion-induced MPF. A 500 m single mode fiber in a two-tap MPF is used to perform temperature compensation. The power fading frequency of the dispersion-induced MPF and the dip frequency of the two-tap MPF are selected to monitor the magnetic field and temperature changes. When temperature changes, both power fading frequency and dip frequency will change. While only power fading frequency shifts as magnetic field changes. Consequently, dual parameter sensing can be achieved by monitoring the characteristic microwave frequencies of the two MPFs. The temperature cross-sensitivity is well resolved in this way. In the experiment, the microwave frequency changes 5.84 MHz as external magnetic field increases by 1 mT. The corresponded theoretical resolution can reach 0.17 nT, which is only limited by the minimum resolution of vector network analyzer.

源语言英语
页(从-至)33003-33014
页数12
期刊Optics Express
31
20
DOI
出版状态已出版 - 1 9月 2023

指纹

探究 'Simultaneous magnetic field and temperature measurement with high resolution based on cascaded microwave photonic filters' 的科研主题。它们共同构成独一无二的指纹。

引用此