TY - GEN
T1 - Simulations and measurements of sliding friction between rough surfaces in point contacts
T2 - STLE/ASME International Joint Tribology Conference, IJTC 2006
AU - Wang, Shun
AU - Wang, Wenzhong
AU - Shi, Fanghui
AU - Wang, Yucong
AU - Chen, Haibo
AU - Wang, Hui
AU - Hu, Yuanzhong
PY - 2006
Y1 - 2006
N2 - This paper presents a numerical approach to simulate sliding friction between engineering surfaces with 3D roughness in point contacts. The simulations covered entire lubrication regime, including full-film EHL, mixed lubrication and boundary lubrication. The results, when being plotted as a function of sliding velocity, give a Stribeck-type friction curve. The prospective ability to predict friction between the real rough surfaces in relative sliding is certainly of great value in engineering practice. The numerical approach is developed on the basis of the deterministic solutions of mixed lubrication, which is able to predict the precise locations where the asperity contacts occur, and the pressure distribution over both lubrication and contact areas. If the friction coefficients over the contacting asperities have been determined, total friction force between the surfaces can be calculated by summing-up the two components, i.e., the boundary friction contributed by contacting asperities and the shear stress in hydrodynamic regions. The frictions from asperity contact was determined in terms of a limiting shear stress or shear strength of boundary films while the fluid shear stress in the lubrication areas was calculated using different rheology models for the lubricant, in order to examine which one makes more sense in predicting fluid tractions. Experiments were conducted on a commercial test device - Universal Material Tester (UMT) to measure friction at a fixed load but different sliding velocities in reciprocal or rotary motions. The results also give rise to the Stribeck friction curves for different rough surfaces, which are to be compared with the results from simulations. In present study a set of sample cases in circle point contacts are analyzed. The samples were prepared with typical machined surfaces in different roughness heights and textures. Results show that there is a general agreement between the experiments and simulations. It is found that surface features, such as roughness amplitude and patterns, may have a significant effect on the critical speed of transition from hydrodynamic to mixed lubrication. In the regime of mixed lubrication, rougher samples would give rise to a higher friction if the operation conditions are the same.
AB - This paper presents a numerical approach to simulate sliding friction between engineering surfaces with 3D roughness in point contacts. The simulations covered entire lubrication regime, including full-film EHL, mixed lubrication and boundary lubrication. The results, when being plotted as a function of sliding velocity, give a Stribeck-type friction curve. The prospective ability to predict friction between the real rough surfaces in relative sliding is certainly of great value in engineering practice. The numerical approach is developed on the basis of the deterministic solutions of mixed lubrication, which is able to predict the precise locations where the asperity contacts occur, and the pressure distribution over both lubrication and contact areas. If the friction coefficients over the contacting asperities have been determined, total friction force between the surfaces can be calculated by summing-up the two components, i.e., the boundary friction contributed by contacting asperities and the shear stress in hydrodynamic regions. The frictions from asperity contact was determined in terms of a limiting shear stress or shear strength of boundary films while the fluid shear stress in the lubrication areas was calculated using different rheology models for the lubricant, in order to examine which one makes more sense in predicting fluid tractions. Experiments were conducted on a commercial test device - Universal Material Tester (UMT) to measure friction at a fixed load but different sliding velocities in reciprocal or rotary motions. The results also give rise to the Stribeck friction curves for different rough surfaces, which are to be compared with the results from simulations. In present study a set of sample cases in circle point contacts are analyzed. The samples were prepared with typical machined surfaces in different roughness heights and textures. Results show that there is a general agreement between the experiments and simulations. It is found that surface features, such as roughness amplitude and patterns, may have a significant effect on the critical speed of transition from hydrodynamic to mixed lubrication. In the regime of mixed lubrication, rougher samples would give rise to a higher friction if the operation conditions are the same.
KW - Mixed lubrication
KW - Numerical simulations
KW - Roughness effects
KW - Sliding friction
UR - http://www.scopus.com/inward/record.url?scp=33751267300&partnerID=8YFLogxK
U2 - 10.1115/ijtc2006-12142
DO - 10.1115/ijtc2006-12142
M3 - Conference contribution
AN - SCOPUS:33751267300
SN - 0791837890
SN - 9780791837894
T3 - Proceedings of STLE/ASME International Joint Tribology Conference, IJTC 2006
BT - Proceedings of STLE/ASME International Joint Tribology Conference, IJTC 2006
PB - American Society of Mechanical Engineers
Y2 - 23 October 2006 through 25 October 2006
ER -