SimSR: Simple Distance-Based State Representation for Deep Reinforcement Learning

Hongyu Zang, Xin Li*, Mingzhong Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

10 引用 (Scopus)

摘要

This work explores how to learn robust and generalizable state representation from image-based observations with deep reinforcement learning methods. Addressing the computational complexity, stringent assumptions and representation collapse challenges in existing work of bisimulation metric, we devise Simple State Representation (SimSR) operator. SimSR enables us to design a stochastic approximation method that can practically learn the mapping functions (encoders) from observations to latent representation space. In addition to the theoretical analysis and comparison with the existing work, we experimented and compared our work with recent state-of-the-art solutions in visual MuJoCo tasks. The results shows that our model generally achieves better performance and has better robustness and good generalization.

源语言英语
主期刊名AAAI-22 Technical Tracks 8
出版商Association for the Advancement of Artificial Intelligence
8997-9005
页数9
ISBN(电子版)1577358767, 9781577358763
出版状态已出版 - 30 6月 2022
活动36th AAAI Conference on Artificial Intelligence, AAAI 2022 - Virtual, Online
期限: 22 2月 20221 3月 2022

出版系列

姓名Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
36

会议

会议36th AAAI Conference on Artificial Intelligence, AAAI 2022
Virtual, Online
时期22/02/221/03/22

指纹

探究 'SimSR: Simple Distance-Based State Representation for Deep Reinforcement Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此