Siamese Dual Path Aggregation Network for Object Tracking

Yijun Tian, Huiqian Du, Zhifeng Ma

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Siamese trackers have attracted great attention on visual object tracking due to their real-time speed and high accuracy. In this paper, we propose a dual path aggregation network (SiamDPAN) for high-performance tracking. First, we build a multi-level similarity maps aggregation (MSA) structure, which predicts and fuses the similarity maps from multi-level features. Second, we propose a mask path aggregation module (MPA) for better capturing the appearance changes of objects by propagating maps in low-layers. We conduct sufficient ablation studies to demonstrate the effectiveness of our proposed tracker. We only train our network with two datasets, achieving 0.436 EAO and 0.351 EAO on VOT2016 and VOT2018.

源语言英语
主期刊名Thirteenth International Conference on Graphics and Image Processing, ICGIP 2021
编辑Liang Xiao, Dan Xu
出版商SPIE
ISBN(电子版)9781510650428
DOI
出版状态已出版 - 2022
活动13th International Conference on Graphics and Image Processing, ICGIP 2021 - Kunming, 中国
期限: 18 8月 202120 8月 2021

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
12083
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议13th International Conference on Graphics and Image Processing, ICGIP 2021
国家/地区中国
Kunming
时期18/08/2120/08/21

指纹

探究 'Siamese Dual Path Aggregation Network for Object Tracking' 的科研主题。它们共同构成独一无二的指纹。

引用此