摘要
The rate constant for the CH3 + C2H6 → CH4 + C2H5 reaction was studied behind reflected shock waves at temperatures between 1369 and 1626 K and pressures from 8.6 to 47.4 atm in mixtures of methane, ethane, and argon. Ethylene time histories were measured using laser absorption of radiation from a carbon dioxide gas laser near 10.532 μm. The resulting rate constant data can be represented by the Arrhenius equation k (T) = 3.90 × 1013 exp(-16670 cal/mol/RT) cm3 mol-1 s-1. We believe this is the first study to extend experimental data for this rate constant to temperatures above 1400 K. The overall 2σ uncertainty of the current data is +18%/-21% resulting primarily from uncertainties associated with the influence of secondary reactions and the fitting of rapidly changing species time histories at the higher temperatures.
源语言 | 英语 |
---|---|
页(从-至) | 9096-9101 |
页数 | 6 |
期刊 | Journal of Physical Chemistry A |
卷 | 123 |
期 | 42 |
DOI | |
出版状态 | 已出版 - 24 10月 2019 |
已对外发布 | 是 |