Shock Tube Measurement of the CH3 + C2H6 → CH4 + C2H5 Rate Constant

Jiankun Shao*, Wei Wei, Rishav Choudhary, David F. Davidson, Ronald K. Hanson

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

11 引用 (Scopus)

摘要

The rate constant for the CH3 + C2H6 → CH4 + C2H5 reaction was studied behind reflected shock waves at temperatures between 1369 and 1626 K and pressures from 8.6 to 47.4 atm in mixtures of methane, ethane, and argon. Ethylene time histories were measured using laser absorption of radiation from a carbon dioxide gas laser near 10.532 μm. The resulting rate constant data can be represented by the Arrhenius equation k (T) = 3.90 × 1013 exp(-16670 cal/mol/RT) cm3 mol-1 s-1. We believe this is the first study to extend experimental data for this rate constant to temperatures above 1400 K. The overall 2σ uncertainty of the current data is +18%/-21% resulting primarily from uncertainties associated with the influence of secondary reactions and the fitting of rapidly changing species time histories at the higher temperatures.

源语言英语
页(从-至)9096-9101
页数6
期刊Journal of Physical Chemistry A
123
42
DOI
出版状态已出版 - 24 10月 2019
已对外发布

指纹

探究 'Shock Tube Measurement of the CH3 + C2H6 → CH4 + C2H5 Rate Constant' 的科研主题。它们共同构成独一无二的指纹。

引用此