Shock induced gradient microstructure with hierarchical nanotwins to enhance mechanical properties of Ti6Al4V alloy

Yansong Guo, Bin Jia*, Qiang Zhou, Rui Liu, Ali Arab, Wen Chen, Yeping Ren, Chun Ran, Pengwan Chen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

6 引用 (Scopus)

摘要

In the present work, Ti6Al4V alloy was treated by one/two passes explosion hardening (EH) technique to enhance mechanical properties. The phase structures, grain size distribution, dislocation and twin structures of EH treated Ti6Al4V alloy were characterized in detail. Mechanical properties of EH treated Ti6Al4V alloy were measured by tensile and compressive tests. The mechanism of shock-induced strengthening was subsequently analyzed. Experimental results showed that gradient grain microstructure with nanotwins/hierarchical nanotwins and β-α phase transformation occurred near the surface of EH treated Ti6Al4V alloy. Furthermore, the tensile and compressive strengths of Ti6Al4V alloy exhibited significant enhancement after EH treatment. The compressive strength of the materials increased from 1008 MPa in untreated condition to 1121 MPa in one pass EH treatment and 1365 MPa in two passes EH treatment, while the fracture strains always remained more than 0.15. The significant strengthening of Ti6Al4V alloy after two passes EH treatment was mainly attributed to the formation of hierarchical nanotwins, which can effectively impede dislocation motion. In summary, EH is an effective technique to improve mechanical properties of Ti6Al4V alloy by producing gradient microstructure with hierarchical nanotwins. The present research may have the potential use for metallic materials in the field of load-carrying capacity, tribological property and fatigue property.

源语言英语
文章编号117693
期刊Journal of Materials Processing Technology
307
DOI
出版状态已出版 - 9月 2022

指纹

探究 'Shock induced gradient microstructure with hierarchical nanotwins to enhance mechanical properties of Ti6Al4V alloy' 的科研主题。它们共同构成独一无二的指纹。

引用此