Set-Membership Adaptive Robot Control With Deterministically Bounded Learning Gains

Kai Guo*, Zekun Zhang, Dong Dong Zheng*, Jie Sun

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

As a powerful set-membership adaptive identification algorithm, the optimal bounded ellipsoid (OBE) enables fast convergence speeds because it exploits a priori information about system dynamics by estimating sets of feasible solutions rather than single-point solutions. However, its learning gain matrix suffers from vanishing or unbounded growth, which seriously limits its practical performance. In this article, a novel OBE algorithm is proposed to ensure that the learning gain matrix is constrained by upper and lower bounds, which are unaffected by the hardly predictable excitation levels and can be determined before implementing the algorithm. Thus, the system robustness and tracking capability for time-varying dynamics can be improved. In light of the proposed OBE identification algorithm, an adaptive robot control strategy is further proposed, where the robot dynamics are reconstructed through neural networks. The practical partial asymptotic stability of the closed-loop system is demonstrated using the Lyapunov method. Furthermore, noisy acceleration signals and the inversion of the inertial matrix are eliminated with the proposed control strategy. Experimental results on a robot manipulator validate the effectiveness of the proposed approach.

源语言英语
页(从-至)8564-8574
页数11
期刊IEEE Transactions on Industrial Informatics
19
8
DOI
出版状态已出版 - 1 8月 2023

指纹

探究 'Set-Membership Adaptive Robot Control With Deterministically Bounded Learning Gains' 的科研主题。它们共同构成独一无二的指纹。

引用此