Sequential Semantic Knowledge Graph Embedding

Yu Ming Shang, Heyan Huang, Yan Yuan*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Knowledge graph embedding is aimed at representing entities and relations of knowledge graph in a low-dimensional continuous vector space. Previous embedding models pay little attention to the sequential semantic information in triples and as a result, may lead to the semantic drift problem. Towards this end, we propose a novel sequential semantic embedding (SeqSemE) model to address this problem in this paper. Firstly, we utilize a sequential language model to capture sequential information of triples and interactions between entities and relations. Secondly, we propose a method of learning two embeddings for each relation to avoid semantic drift. Extensive experiments on link prediction show that our SeqSemE is efficient and effective. It can obtain better performance than previous state-of-the-art embedding models.

源语言英语
主期刊名Proceedings of 2021 International Conference on Autonomous Unmanned Systems, ICAUS 2021
编辑Meiping Wu, Yifeng Niu, Mancang Gu, Jin Cheng
出版商Springer Science and Business Media Deutschland GmbH
1547-1557
页数11
ISBN(印刷版)9789811694912
DOI
出版状态已出版 - 2022
活动International Conference on Autonomous Unmanned Systems, ICAUS 2021 - Changsha, 中国
期限: 24 9月 202126 9月 2021

出版系列

姓名Lecture Notes in Electrical Engineering
861 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议International Conference on Autonomous Unmanned Systems, ICAUS 2021
国家/地区中国
Changsha
时期24/09/2126/09/21

指纹

探究 'Sequential Semantic Knowledge Graph Embedding' 的科研主题。它们共同构成独一无二的指纹。

引用此