Semantics Driven Embedding Learning for Effective Entity Alignment

Ziyue Zhong, Meihui Zhang*, Ju Fan, Chenxiao Dou

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

23 引用 (Scopus)

摘要

Knowledge-based data service has become an emerging form of service in the world wide web (WWW). To ensure the service quality, a comprehensive knowledge base has to be constructed. Knowledge base integration is often a primary way to improve the completeness. In this paper, we focus on the fundamental problem in knowledge base integration, i.e., entity alignment (EA). EA has been studied for years. Traditional approaches focus on the symbolic features of entities and propose various similarity measures to identify equivalent entities. With recent development in knowledge graph representation learning, embedding-based entity alignment has emerged, which encodes the entities into vectors according to the semantic or structural information and computes the relatedness of entities based on the vector representation. While embedding-based approaches achieve promising results, we identify some important information that are not well exploited in existing works: 1) The neighboring entities contribute differently in the EA process, and should be carefully assigned the importance in learning the relatedness of entities; 2) The attribute values (especially the long texts) contain rich semantics that can build supplementary associations between entities. To this end, we propose SDEA - a Semantics Driven entity embedding method for Entity Alignment. SDEA consists of two modules, namely attribute embedding and relation embedding. The attribute embedding captures the semantic information from attribute values with a pre-trained transformer-based language model. The relation embedding selectively aggregates the semantic information from neighbors using a GRU model equipped with an attention mechanism. Both attribute embedding and relation embedding are driven by semantics, building bridges between entities. Experimental results show that our method significantly outperforms the state-of-the-art approaches on three benchmarks.

源语言英语
主期刊名Proceedings - 2022 IEEE 38th International Conference on Data Engineering, ICDE 2022
出版商IEEE Computer Society
2127-2140
页数14
ISBN(电子版)9781665408837
DOI
出版状态已出版 - 2022
活动38th IEEE International Conference on Data Engineering, ICDE 2022 - Virtual, Online, 马来西亚
期限: 9 5月 202212 5月 2022

出版系列

姓名Proceedings - International Conference on Data Engineering
2022-May
ISSN(印刷版)1084-4627

会议

会议38th IEEE International Conference on Data Engineering, ICDE 2022
国家/地区马来西亚
Virtual, Online
时期9/05/2212/05/22

指纹

探究 'Semantics Driven Embedding Learning for Effective Entity Alignment' 的科研主题。它们共同构成独一无二的指纹。

引用此