TY - GEN
T1 - Semantic structure-based word embedding by incorporating concept convergence and word divergence
AU - Liu, Qian
AU - Huang, Heyan
AU - Zhang, Guangquan
AU - Gao, Yang
AU - Xuan, Junyu
AU - Lu, Jie
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - Representing the semantics of words is a fundamental task in text processing. Several research studies have shown that text and knowledge bases (KBs) are complementary sources for word embedding learning. Most existing methods only consider relationships within word-pairs in the usage of KBs. We argue that the structural information of well-organized words within the KBs is able to convey more effective and stable knowledge in capturing semantics of words. In this paper, we propose a semantic structure-based word embedding method, and introduce concept convergence and word divergence to reveal semantic structures in the word embedding learning process. To assess the effectiveness of our method, we use WordNet for training and conduct extensive experiments on word similarity, word analogy, text classification and query expansion. The experimental results show that our method outperforms state-of-the-art methods, including the methods trained solely on the corpus, and others trained on the corpus and the KBs.
AB - Representing the semantics of words is a fundamental task in text processing. Several research studies have shown that text and knowledge bases (KBs) are complementary sources for word embedding learning. Most existing methods only consider relationships within word-pairs in the usage of KBs. We argue that the structural information of well-organized words within the KBs is able to convey more effective and stable knowledge in capturing semantics of words. In this paper, we propose a semantic structure-based word embedding method, and introduce concept convergence and word divergence to reveal semantic structures in the word embedding learning process. To assess the effectiveness of our method, we use WordNet for training and conduct extensive experiments on word similarity, word analogy, text classification and query expansion. The experimental results show that our method outperforms state-of-the-art methods, including the methods trained solely on the corpus, and others trained on the corpus and the KBs.
UR - http://www.scopus.com/inward/record.url?scp=85059698434&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85059698434
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 5261
EP - 5268
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI press
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Y2 - 2 February 2018 through 7 February 2018
ER -