TY - GEN
T1 - Self-paced mixture of regressions
AU - Han, Longfei
AU - Zhang, Dingwen
AU - Huang, Dong
AU - Chang, Xiaojun
AU - Ren, Jun
AU - Luo, Senlin
AU - Han, Junwei
PY - 2017
Y1 - 2017
N2 - Mixture of regressions (MoR) is the wellestablished and effective approach to model discontinuous and heterogeneous data in regression problems. Existing MoR approaches assume smooth joint distribution for its good anlaytic properties. However, such assumption makes existing MoR very sensitive to intra-component outliers (the noisy training data residing in certain components) and the inter-component imbalance (the different amounts of training data in different components). In this paper, we make the earliest effort on Self-paced Learning (SPL) in MoR, i.e., Self-paced mixture of regressions (SPMoR) model. We propose a novel selfpaced regularizer based on the Exclusive LASSO, which improves inter-component balance of training data. As a robust learning regime, SPL pursues confidence sample reasoning. To demonstrate the effectiveness of SPMoR, we conducted experiments on both the sythetic examples and real-world applications to age estimation and glucose estimation. The results show that SPMoR outperforms the stateof-the-arts methods.
AB - Mixture of regressions (MoR) is the wellestablished and effective approach to model discontinuous and heterogeneous data in regression problems. Existing MoR approaches assume smooth joint distribution for its good anlaytic properties. However, such assumption makes existing MoR very sensitive to intra-component outliers (the noisy training data residing in certain components) and the inter-component imbalance (the different amounts of training data in different components). In this paper, we make the earliest effort on Self-paced Learning (SPL) in MoR, i.e., Self-paced mixture of regressions (SPMoR) model. We propose a novel selfpaced regularizer based on the Exclusive LASSO, which improves inter-component balance of training data. As a robust learning regime, SPL pursues confidence sample reasoning. To demonstrate the effectiveness of SPMoR, we conducted experiments on both the sythetic examples and real-world applications to age estimation and glucose estimation. The results show that SPMoR outperforms the stateof-the-arts methods.
UR - http://www.scopus.com/inward/record.url?scp=85031922935&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2017/252
DO - 10.24963/ijcai.2017/252
M3 - Conference contribution
AN - SCOPUS:85031922935
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1816
EP - 1822
BT - 26th International Joint Conference on Artificial Intelligence, IJCAI 2017
A2 - Sierra, Carles
PB - International Joint Conferences on Artificial Intelligence
T2 - 26th International Joint Conference on Artificial Intelligence, IJCAI 2017
Y2 - 19 August 2017 through 25 August 2017
ER -