Self-Induced Dual-Layered Solid Electrolyte Interphase with High Toughness and High Ionic Conductivity for Ultra-Stable Lithium Metal Batteries

Xin Hu, Yitian Ma, Ji Qian*, Wenjie Qu, Yu Li, Rui Luo, Huirong Wang, Anbin Zhou, Yi Chen, Keqing Shi, Li Li, Feng Wu, Renjie Chen*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

15 引用 (Scopus)

摘要

Lithium (Li) metal is considered as one of the most promising candidates of anode material for high-specific-energy batteries, while irreversible chemical reactions always occur on the Li surface to continuously consume active Li, electrolyte. Solid electrolyte interphase (SEI) layer has been regarded as the key component in protecting Li metal anode. Herein, a controllable dual-layered SEI for Li metal anode in a scalable, low-loss manner is constructed. The SEI is self-induced by the predeposited LiAlO2 (LAO) layer during the initial cycles, in which the outer organic layer is produced due to the electrons tunneling through LAO, resulting in the reduction of electrolyte. The robust inner LAO layer can promote uniform Li deposition owing to its favorable mechanical strength and ionic conductivity, and the outer organic layer can further improve the stability of SEI. Benefiting from the remarkable effects of this dual-layered SEI, enhanced electrochemical performance of the LAO–Li anode is achieved. Additionally, a large-size LAO–Li sample can be easily obtained, and the preparation of the modified Li metal anode shows huge potential for large-scale production. This work highlights the tremendous potential of this self-induced dual-layered SEI for the commercialization of Li metal anode.

源语言英语
文章编号2303710
期刊Advanced Materials
36
4
DOI
出版状态已出版 - 25 1月 2024

指纹

探究 'Self-Induced Dual-Layered Solid Electrolyte Interphase with High Toughness and High Ionic Conductivity for Ultra-Stable Lithium Metal Batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此