Segmentation of Aorta with Aortic Dissection based on Centerline and Boundary Distance

Zhaozhan Song, Senchun Chai, Enjun Zhu

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Segmentation of the aorta is important for the diagnosis and treatment of aortic disease. However, low image contrast and blurred boundaries between the aortic region and surrounding tissues can significantly affect segmentation performance. Based on 3D-UNet with spatial attention module, this paper proposes a multi-branch shape-aware segmentation network named CDM-Net, which transforms the traditional segmentation problem into a regression problem of distance transformation map and centerline heatmap. A new inference method based on regression is also proposed, the prediction of our network can be combined with the predictions of other networks. Without changing other segmentation metrics (Dice, ASD), the clDice of the combined method improves by 1.5%. Our proposed method can improve the connectivity of aorta segmentation results, paving the way for accurate centerline extraction and multiplanar reconstruction in the future.

源语言英语
主期刊名Proceedings of the 41st Chinese Control Conference, CCC 2022
编辑Zhijun Li, Jian Sun
出版商IEEE Computer Society
7292-7297
页数6
ISBN(电子版)9789887581536
DOI
出版状态已出版 - 2022
活动41st Chinese Control Conference, CCC 2022 - Hefei, 中国
期限: 25 7月 202227 7月 2022

出版系列

姓名Chinese Control Conference, CCC
2022-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议41st Chinese Control Conference, CCC 2022
国家/地区中国
Hefei
时期25/07/2227/07/22

指纹

探究 'Segmentation of Aorta with Aortic Dissection based on Centerline and Boundary Distance' 的科研主题。它们共同构成独一无二的指纹。

引用此