Segment-based traffic sign detection from mobile laser scanning data

Ying Li, Lingfei Ma, Yuchun Huang, Jonathon Li*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

This paper presents a segment-based traffic sign detection method using vehicle-borne mobile laser scanning (MLS) data. This method has three steps: road scene segmentation, clustering and traffic sign detection. The non-ground points are firstly segmented from raw MLS data by estimating road ranges based on vehicle trajectory and geometric features of roads (e.g., surface normals and planarity). The ground points are then removed followed by obtaining non-ground points where traffic signs are contained. Secondly, clustering is conducted to detect the traffic sign segments (or candidates) from the non-ground points. Finally, these segments are classified to specified classes. Shape, elevation, intensity, 2D and 3D geometric and structural features of traffic sign patches are learned by the support vector machine (SVM) algorithm to detect traffic signs among segments. The proposed algorithm has been tested on a MLS point cloud dataset acquired by a Leador system in the urban environment. The results demonstrate the applicability of the proposed algorithm for detecting traffic signs in MLS point clouds.

源语言英语
主期刊名2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
4607-4610
页数4
ISBN(电子版)9781538671504
DOI
出版状态已出版 - 31 10月 2018
已对外发布
活动38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, 西班牙
期限: 22 7月 201827 7月 2018

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2018-July

会议

会议38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
国家/地区西班牙
Valencia
时期22/07/1827/07/18

指纹

探究 'Segment-based traffic sign detection from mobile laser scanning data' 的科研主题。它们共同构成独一无二的指纹。

引用此