摘要
Hyperspectral images (HSIs), with hundreds of narrow spectral bands, are increasingly used for ground object classification in remote sensing. However, many HSI classification models operate pixel-by-pixel, limiting the utilization of spatial information and resulting in increased inference time for the whole image. This paper proposes SegHSI, an effective and efficient end-to-end HSI segmentation model, alongside a novel training strategy. SegHSI adopts a head-free structure with cluster attention modules and spatial-aware feedforward networks (SA-FFN) for multiscale spatial encoding. Cluster attention encodes pixels through constructed clusters within the HSI, while SA-FFN integrates depth-wise convolution to enhance spatial context. Our training strategy utilizes a student-teacher model framework that combines labeled pixel class information with consistency learning on unlabeled pixels. Experiments on three public HSI datasets demonstrate that SegHSI not only surpasses other state-of-the-art models in segmentation accuracy but also achieves inference time at the scale of seconds, even reaching sub-second speeds for full-image classification. Code is available at https://github.com/huanliu233/SegHSI.
源语言 | 英语 |
---|---|
页(从-至) | 6469-6482 |
页数 | 14 |
期刊 | IEEE Transactions on Image Processing |
卷 | 33 |
DOI | |
出版状态 | 已出版 - 2024 |