SCTrans: Motor Imagery EEG Classification Method based on CNN-Transformer Structure

Bing Sun, Qun Wang*, Shuangyan Li, Qi Deng

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

As Brain-Computer Interfaces (BCI) systems have been developed to transform human intentions into control commands using EEG data, Motor Imagery (MI) BCI is becoming more and more important in BCI paradigms. However, the non-stationarity and substantial inter-subject variability of EEG data make classification difficult. To resolve the mentioned constraints of MI-EEG classification, we proposed SCTrans, a novel model combining CNN and Transformer networks that can be used for MI-EEG classification problems. Shallow and deep features for EEG data extraction using the CNN module and Transformer module respectively. Experiments show that the classification accuracy and F1-score of SCTrans are significantly better than the SOTA models in both subject-independent and subject-dependent manners.

源语言英语
主期刊名2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024
出版商Institute of Electrical and Electronics Engineers Inc.
2001-2004
页数4
ISBN(电子版)9798350385557
DOI
出版状态已出版 - 2024
活动5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024 - Hybrid, Nanjing, 中国
期限: 29 5月 202431 5月 2024

出版系列

姓名2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024

会议

会议5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024
国家/地区中国
Hybrid, Nanjing
时期29/05/2431/05/24

指纹

探究 'SCTrans: Motor Imagery EEG Classification Method based on CNN-Transformer Structure' 的科研主题。它们共同构成独一无二的指纹。

引用此