TY - JOUR
T1 - Screening of transition metal single-atom catalysts supported by a WS2 monolayer for electrocatalytic nitrogen reduction reaction
T2 - insights from activity trend and descriptor
AU - Li, Renyi
AU - Guo, Wei
N1 - Publisher Copyright:
© 2022 The Royal Society of Chemistry.
PY - 2022/5/10
Y1 - 2022/5/10
N2 - The electrocatalytic nitrogen reduction reaction (NRR), as an alternative green technology to the Haber-Bosch process, can efficiently synthesize ammonia under ambient conditions and has a reduced carbon footprint. Here we systematically investigate the NRR activity and selectivity of transition metal (TM) single-atom catalyst (SAC) anchored WS2 monolayers (TM@WS2) by means of first-principles calculations and microkinetic modeling. The construction of the reaction activity trend and the identification of an activity descriptor, namely *N2H adsorption energy, facilitate the efficient screening and rational design of SACs with high activity. Manipulating the adsorption strength of the pivotal *N2H intermediate is a potential strategy for enhancing NRR activity. Utilizing the limiting potential difference of NRR and the hydrogen evolution reaction (HER) as a selectivity descriptor, we screen three SACs with excellent activity and selectivity toward NRR, i.e., Re@WS2, Os@WS2 and Ir@WS2 with favorable limiting potentials of -0.44 V, -0.38 V and -0.69 V. By using the explicit H9O4+ model, the kinetic barriers of the rate-determining steps (0.47 eV-1.15 eV) of the solvated proton transfer on the screened SACs are found to be moderate, indicative of a kinetically feasible process. Microkinetic modeling shows that the turnover frequencies of N2 reduction to NH3 on Re@WS2, Os@WS2 and Ir@WS2 are 1.52 × 105, 8.21 × 102 and 4.17 × 10−4 per s per site at 400 K, achieving fast reaction rates. The coexistence of empty and occupied 5d orbitals of candidate SACs is beneficial for σ donation and π* backdonation, endowing them with extraordinary N2 adsorption and activation. Moreover, the screened SACs possess good dispersity and thermodynamic stability. Our work provides a promising solution for the efficient screening and rational design of high-performance electrocatalysts toward the NRR.
AB - The electrocatalytic nitrogen reduction reaction (NRR), as an alternative green technology to the Haber-Bosch process, can efficiently synthesize ammonia under ambient conditions and has a reduced carbon footprint. Here we systematically investigate the NRR activity and selectivity of transition metal (TM) single-atom catalyst (SAC) anchored WS2 monolayers (TM@WS2) by means of first-principles calculations and microkinetic modeling. The construction of the reaction activity trend and the identification of an activity descriptor, namely *N2H adsorption energy, facilitate the efficient screening and rational design of SACs with high activity. Manipulating the adsorption strength of the pivotal *N2H intermediate is a potential strategy for enhancing NRR activity. Utilizing the limiting potential difference of NRR and the hydrogen evolution reaction (HER) as a selectivity descriptor, we screen three SACs with excellent activity and selectivity toward NRR, i.e., Re@WS2, Os@WS2 and Ir@WS2 with favorable limiting potentials of -0.44 V, -0.38 V and -0.69 V. By using the explicit H9O4+ model, the kinetic barriers of the rate-determining steps (0.47 eV-1.15 eV) of the solvated proton transfer on the screened SACs are found to be moderate, indicative of a kinetically feasible process. Microkinetic modeling shows that the turnover frequencies of N2 reduction to NH3 on Re@WS2, Os@WS2 and Ir@WS2 are 1.52 × 105, 8.21 × 102 and 4.17 × 10−4 per s per site at 400 K, achieving fast reaction rates. The coexistence of empty and occupied 5d orbitals of candidate SACs is beneficial for σ donation and π* backdonation, endowing them with extraordinary N2 adsorption and activation. Moreover, the screened SACs possess good dispersity and thermodynamic stability. Our work provides a promising solution for the efficient screening and rational design of high-performance electrocatalysts toward the NRR.
UR - http://www.scopus.com/inward/record.url?scp=85131228389&partnerID=8YFLogxK
U2 - 10.1039/d2cp01446g
DO - 10.1039/d2cp01446g
M3 - Article
AN - SCOPUS:85131228389
SN - 1463-9076
VL - 24
SP - 13384
EP - 13398
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 21
ER -