TY - JOUR
T1 - Schottky junction and multiheterostructure synergistically enhance rate performance and cycling stability
AU - Chu, Jianhua
AU - Han, Kun
AU - Yu, Qiyao
AU - Wang, Hailiang
AU - Xi, Kai
AU - Lai, Feili
AU - Zhang, Jianguo
AU - Bao, Yanping
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/2/15
Y1 - 2022/2/15
N2 - Constructing Schottky junction and multiheterostructure is considered a promising modification strategy to enhance reaction kinetics and prolong cycle life for alkali ion batteries, especially for potassium-ion batteries (KIBs) with sluggish kinetics and huge volume expansion. Herein, a well-designed multiheterostructure of SnS@C@MoS2@NC micronflower is successfully synthesized, which consists of SnS, intermediate carbon, MoS2 and N-doped carbon from interior to exterior. The Schottky junction with built-in electric-field induced by phase boundaries and the double carbon layers (intermediate carbon and N-doped carbon coating layer) significantly improve the electrons transfer rate, and simultaneously the multiheterostructure affords rapid K+ diffusion, strong K absorption and boosted electronic conductivity, resulting in superior charge transfer kinetics, which is explicitly unraveled by experimental results and first-principles calculations. Moreover, this multilayered structure with double carbon layers can effectively buffer the volumetric variation and maintain structural stability. Benefiting from these merits, the SnS@C@MoS2@NC anode delivers remarkable reversible capacity (471 mAh g−1 at 50 mA g−1 after 100 cycles), outstanding rate performance (305 mAh g−1 at 1000 mA g−1) and ultralong lifespan (253 mAh g−1 at 1000 mA g−1 after 3000 cycles) for KIBs. This work sheds a light on fabricating advanced electrodes by utilizing the Schottky junction and multiheterostructure.
AB - Constructing Schottky junction and multiheterostructure is considered a promising modification strategy to enhance reaction kinetics and prolong cycle life for alkali ion batteries, especially for potassium-ion batteries (KIBs) with sluggish kinetics and huge volume expansion. Herein, a well-designed multiheterostructure of SnS@C@MoS2@NC micronflower is successfully synthesized, which consists of SnS, intermediate carbon, MoS2 and N-doped carbon from interior to exterior. The Schottky junction with built-in electric-field induced by phase boundaries and the double carbon layers (intermediate carbon and N-doped carbon coating layer) significantly improve the electrons transfer rate, and simultaneously the multiheterostructure affords rapid K+ diffusion, strong K absorption and boosted electronic conductivity, resulting in superior charge transfer kinetics, which is explicitly unraveled by experimental results and first-principles calculations. Moreover, this multilayered structure with double carbon layers can effectively buffer the volumetric variation and maintain structural stability. Benefiting from these merits, the SnS@C@MoS2@NC anode delivers remarkable reversible capacity (471 mAh g−1 at 50 mA g−1 after 100 cycles), outstanding rate performance (305 mAh g−1 at 1000 mA g−1) and ultralong lifespan (253 mAh g−1 at 1000 mA g−1 after 3000 cycles) for KIBs. This work sheds a light on fabricating advanced electrodes by utilizing the Schottky junction and multiheterostructure.
KW - Anode
KW - High-rate performance
KW - Multiheterostructure
KW - Potassium-ion batteries
KW - Schottky junction
UR - http://www.scopus.com/inward/record.url?scp=85117325581&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2021.132994
DO - 10.1016/j.cej.2021.132994
M3 - Article
AN - SCOPUS:85117325581
SN - 1385-8947
VL - 430
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 132994
ER -