Scattered coupling between two wrinkled graphene nanoribbons analyzed by boundary element method

Shuo Wang, Bin Hu*, Weiguang Liu, Juan Liu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

In this paper, we propose a two-dimensional (2D) boundary element method (BEM) to explore the coupling properties of two distorted graphene nanoribbons (GNRs) with wrinkles. From the calculation results, it is found that the resonant wavelengths are redshifted compared with a single GNR, and the scattering intensity is greatly increased, due to the coupling between the two GNRs. In the non-degenerate structure, the coupling resonance modes of the two GNRs are the superposition of the resonance modes of every single GNR, and the resonant wavelength and scattering intensity of different modes change differently with the gap between the two GNRs and their heights. When the coupling effect becomes stronger, some modes will split. We explain the results through the charge and current distribution of the GNRs. This work will help to understand the coupling mechanism of surface plasmon resonances of GNRs.

源语言英语
文章编号2150304
期刊Modern Physics Letters B
35
18
DOI
出版状态已出版 - 30 6月 2021

指纹

探究 'Scattered coupling between two wrinkled graphene nanoribbons analyzed by boundary element method' 的科研主题。它们共同构成独一无二的指纹。

引用此