Sample-adaptive Augmentation for Point Cloud Recognition Against Real-world Corruptions

Jie Wang, Lihe Ding, Tingfa Xu*, Shaocong Dong, Xinli Xu, Long Bai, Jianan Li*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

Robust 3D perception under corruption has become an essential task for the realm of 3D vision. While current data augmentation techniques usually perform random transformations on all point cloud objects in an offline way and ignore the structure of the samples, resulting in over-or-under enhancement. In this work, we propose an alternative to make sample-adaptive transformations based on the structure of the sample to cope with potential corruption via an auto-augmentation framework, named as Adapt-Point. Specially, we leverage a imitator, consisting of a Deformation Controller and a Mask Controller, respectively in charge of predicting deformation parameters and producing a per-point mask, based on the intrinsic structural information of the input point cloud, and then conduct corruption simulations on top. Then a discriminator is utilized to prevent the generation of excessive corruption that deviates from the original data distribution. In addition, a perception-guidance feedback mechanism is incorporated to guide the generation of samples with appropriate difficulty level. Furthermore, to address the paucity of real-world corrupted point cloud, we also introduce a new dataset ScanObjectNN-C, that exhibits greater similarity to actual data in real-world environments, especially when contrasted with preceding CAD datasets. Experiments show that our method achieves state-of-the-art results on multiple corruption benchmarks, including ModelNet-C, our ScanObjectNN-C, and ShapeNet-C.

源语言英语
主期刊名Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
出版商Institute of Electrical and Electronics Engineers Inc.
14284-14293
页数10
ISBN(电子版)9798350307184
DOI
出版状态已出版 - 2023
活动2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, 法国
期限: 2 10月 20236 10月 2023

出版系列

姓名Proceedings of the IEEE International Conference on Computer Vision
ISSN(印刷版)1550-5499

会议

会议2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
国家/地区法国
Paris
时期2/10/236/10/23

指纹

探究 'Sample-adaptive Augmentation for Point Cloud Recognition Against Real-world Corruptions' 的科研主题。它们共同构成独一无二的指纹。

引用此