Robust visual tracking using local sparse covariance descriptor and matching pursuit

Bo Ma, Hongwei Hu, Shiqi Liu, Jianglong Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

In this paper, we propose a visual tracking method based on local sparse covariance descriptor and matching pursuit. Covariance descriptor can model feature correlation of target templates effectively, and matching pursuit is employed to select the best target candidate which is reconstructed by target templates. The selection process is performed by solving a least square problem, and the candidate with the smallest projection error is taken as the tracking target. Experimental results on several video sequences demonstrate the good performance of proposed method compared with three existing tracking algorithms.

源语言英语
主期刊名Neural Information Processing - 20th International Conference, ICONIP 2013, Proceedings
485-492
页数8
版本PART 3
DOI
出版状态已出版 - 2013
活动20th International Conference on Neural Information Processing, ICONIP 2013 - Daegu, 韩国
期限: 3 11月 20137 11月 2013

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
编号PART 3
8228 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议20th International Conference on Neural Information Processing, ICONIP 2013
国家/地区韩国
Daegu
时期3/11/137/11/13

指纹

探究 'Robust visual tracking using local sparse covariance descriptor and matching pursuit' 的科研主题。它们共同构成独一无二的指纹。

引用此