Robust Variational Bayesian Filter for Systems with Skew t Noise

Shuhui Li, Zhihong Deng, Ruxuan He, Feng Pan, Xiaoxue Feng, Ni Pu

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Considering the pulse interference, measurement outliers and artificial modeling errors, the non-Gaussian heavy-tailed (or skew) noise widely exists in the real environment. However, to data, little literature is related to the state estimation of the system where the process and measurement noises (PMNs) are both expressed as the skew t distribution (STD). To this end, given the hierarchical representation of the STD, a new robust Bayesian filter based on the variational Bayesian (VB) inference is presented to approximately estimate the unknown state via the collected measurements. And an example from the target tracking scenario is given to illustrate the validity of the designed Bayesian filter.

源语言英语
主期刊名Proceedings - 2020 Chinese Automation Congress, CAC 2020
出版商Institute of Electrical and Electronics Engineers Inc.
6360-6365
页数6
ISBN(电子版)9781728176871
DOI
出版状态已出版 - 6 11月 2020
活动2020 Chinese Automation Congress, CAC 2020 - Shanghai, 中国
期限: 6 11月 20208 11月 2020

出版系列

姓名Proceedings - 2020 Chinese Automation Congress, CAC 2020

会议

会议2020 Chinese Automation Congress, CAC 2020
国家/地区中国
Shanghai
时期6/11/208/11/20

指纹

探究 'Robust Variational Bayesian Filter for Systems with Skew t Noise' 的科研主题。它们共同构成独一无二的指纹。

引用此