Robust Tracking for Motion Blur Based on Correlation Filter

Yu Bai, Tingfa Xu, Ruoling Yang, Xueyuan Sun, Yue Yu

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Correlation filter methods show good performance in robustness, accuracy and speed in visual tracking. In this paper, we propose a new algorithm based on Kernelized Correlation Filter (KCF) to effectively improve performance on motion blur. We adopt a simple and effective image deblurring method based on dark channel prior, combined with correlation filter to form a new Deblurring Correlation Filter (DECF) tracking algorithm. Extensive experimental results on OTB2015 show that our tracker demonstrates the excellent accuracy on tracking with motion blur.

源语言英语
主期刊名Proceedings of 2019 IEEE International Conference of Intelligent Applied Systems on Engineering, ICIASE 2019
编辑Teen-Hang Meen
出版商Institute of Electrical and Electronics Engineers Inc.
309-312
页数4
ISBN(电子版)9781538681398
DOI
出版状态已出版 - 4月 2019
活动2019 IEEE International Conference of Intelligent Applied Systems on Engineering, ICIASE 2019 - Fuzhou, Fujian, 中国
期限: 26 4月 201929 4月 2019

出版系列

姓名Proceedings of 2019 IEEE International Conference of Intelligent Applied Systems on Engineering, ICIASE 2019

会议

会议2019 IEEE International Conference of Intelligent Applied Systems on Engineering, ICIASE 2019
国家/地区中国
Fuzhou, Fujian
时期26/04/1929/04/19

指纹

探究 'Robust Tracking for Motion Blur Based on Correlation Filter' 的科研主题。它们共同构成独一无二的指纹。

引用此