Robust sequential learning algorithm for function approximation base on strong tracking filter

Huaiqi Kang*, Caicheng Shi, Peikun He, Baojun Zhao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This paper addresses the problem that network whose parameters are updated using EKF can not obtain robust performance if the system state saltates when EKF reach stable state. Strong tracking filter which introduces suboptimal fading factor matrix to overcome the problem is utilized to adjust the network parameters to obtain robust performance. The winner neuron updating strategy is also employed to reduce the computation load for online application. Experimental results show the proposed algorithm can achieve smaller approximation error and more compact network structure than several other typical sequential learning algorithms.

源语言英语
主期刊名8th International Conference on Signal Processing, ICSP 2006
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(印刷版)0780397371, 9780780397378
DOI
出版状态已出版 - 2006
活动8th International Conference on Signal Processing, ICSP 2006 - Guilin, 中国
期限: 16 11月 200620 11月 2006

出版系列

姓名International Conference on Signal Processing Proceedings, ICSP
3

会议

会议8th International Conference on Signal Processing, ICSP 2006
国家/地区中国
Guilin
时期16/11/0620/11/06

指纹

探究 'Robust sequential learning algorithm for function approximation base on strong tracking filter' 的科研主题。它们共同构成独一无二的指纹。

引用此