Robust online multi-object tracking by maximum a posteriori estimation with sequential trajectory prior

Min Yang*, Mingtao Pei, Jiajun Shen, Yunde Jia

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

This paper address the problem of online multi-object tracking by using the Maximum a Posteriori (MAP) framework. Given the observations up to the current frame, we estimate the optimal object trajectories by solving two MAP estimation problems: object detection and trajectory-detection association. By introducing the sequential trajectory prior, i.e., the prior information from previous frames about “good” trajectories, into MAP estimation, the output of the pre-trained object detector is refined and the correctness of the association between trajectories and detections is enhanced. In addition, the sequential trajectory prior allows the two MAP stages interact with each other in a sequential manner, which facilitates online multi-object tracking. Our experiments on publicly available challenging datasets demonstrate that the proposed algorithm provides superior performance in various complex scenes.

源语言英语
主期刊名Neural Information Processing - 22nd International Conference, ICONIP 2015, Proceedings
编辑Weng Kin Lai, Qingshan Liu, Tingwen Huang, Sabri Arik
出版商Springer Verlag
623-633
页数11
ISBN(印刷版)9783319265315
DOI
出版状态已出版 - 2015
活动22nd International Conference on Neural Information Processing, ICONIP 2015 - Istanbul, 土耳其
期限: 9 11月 201512 11月 2015

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9489
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议22nd International Conference on Neural Information Processing, ICONIP 2015
国家/地区土耳其
Istanbul
时期9/11/1512/11/15

指纹

探究 'Robust online multi-object tracking by maximum a posteriori estimation with sequential trajectory prior' 的科研主题。它们共同构成独一无二的指纹。

引用此