Robust object tracking via online multiple instance metric learning

Min Yang, Caixia Zhang, Yuwei Wu, Mingtao Pei, Yunde Jia

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

This paper presents a novel object tracking method using online multiple instance metric learning to adaptively capture appearance variations. More specifically, we seek for an appropriate metric via online metric learning to match the different appearances of an object and simultaneously separate the object from the background. The drift problem caused by potentially misaligned training examples is alleviated by performing online metric learning under the multiple instance setting. Both qualitative and quantitative evaluations on various challenging sequences are discussed.

源语言英语
主期刊名Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013
DOI
出版状态已出版 - 2013
活动2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013 - San Jose, CA, 美国
期限: 15 7月 201319 7月 2013

出版系列

姓名Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013

会议

会议2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013
国家/地区美国
San Jose, CA
时期15/07/1319/07/13

指纹

探究 'Robust object tracking via online multiple instance metric learning' 的科研主题。它们共同构成独一无二的指纹。

引用此