摘要
This paper presents a novel object tracking method using online multiple instance metric learning to adaptively capture appearance variations. More specifically, we seek for an appropriate metric via online metric learning to match the different appearances of an object and simultaneously separate the object from the background. The drift problem caused by potentially misaligned training examples is alleviated by performing online metric learning under the multiple instance setting. Both qualitative and quantitative evaluations on various challenging sequences are discussed.
源语言 | 英语 |
---|---|
主期刊名 | Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013 |
DOI | |
出版状态 | 已出版 - 2013 |
活动 | 2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013 - San Jose, CA, 美国 期限: 15 7月 2013 → 19 7月 2013 |
出版系列
姓名 | Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013 |
---|
会议
会议 | 2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013 |
---|---|
国家/地区 | 美国 |
市 | San Jose, CA |
时期 | 15/07/13 → 19/07/13 |
指纹
探究 'Robust object tracking via online multiple instance metric learning' 的科研主题。它们共同构成独一无二的指纹。引用此
Yang, M., Zhang, C., Wu, Y., Pei, M., & Jia, Y. (2013). Robust object tracking via online multiple instance metric learning. 在 Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013 文章 6618252 (Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013). https://doi.org/10.1109/ICMEW.2013.6618252