Robust Metric Boosts Transfer

Qiancheng Yang, Yong Luo*, Han Hu, Xin Zhou, Bo Du*, Dacheng Tao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Transfer metric learning (TML) aims to improve the metric learning in target domains by transferring knowledge from related tasks, where the distance metrics are strong and reliable. Existing TML approaches only focus on how to transfer the source metric knowledge, which is often prone to be over-fitting to the source domain. In this paper, we study how to train a source metric that is appropriate for transfer and then design a general deep TML method for effective metric transfer. In particular, we propose to learn the source metric parameterized by a deep neural network in an adversarial way and then transfer the metric to the target domain by embedding imitation, which allows the inputs of source and target domains to be heterogeneous. Besides, we restrict the size of the target metric network to be small so that the inference is efficient in the target domain. Results in the popular face verification application demonstrate the effectiveness of our method.

源语言英语
主期刊名2022 IEEE 24th International Workshop on Multimedia Signal Processing, MMSP 2022
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781665471893
DOI
出版状态已出版 - 2022
活动24th IEEE International Workshop on Multimedia Signal Processing, MMSP 2022 - Shanghai, 中国
期限: 26 9月 202228 9月 2022

出版系列

姓名2022 IEEE 24th International Workshop on Multimedia Signal Processing, MMSP 2022

会议

会议24th IEEE International Workshop on Multimedia Signal Processing, MMSP 2022
国家/地区中国
Shanghai
时期26/09/2228/09/22

指纹

探究 'Robust Metric Boosts Transfer' 的科研主题。它们共同构成独一无二的指纹。

引用此