RHDDNet: Multi-label Classification-Based Detection of Image Hybrid Distortions

Bowen Dou, Hai Li, Shujuan Hou*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Image distortion detection is a key step in image quality assessment and image reconstruction algorithms. In previous work, a large number of research focus on detecting the single distortion in the image. However, the number of distortion types in the image is often uncertain. Thus, we propose a model that can be used for hybrid distortion detection. Concretely, we transform the hybrid distortion detection task into a multi-label classification task and abstract it as a convolutional network optimization problem. A dataset is created to train the model and evaluate its performance. Experiments show that the proposed model performs well in the detection of hybrid distortions in images.

源语言英语
主期刊名Fourteenth International Conference on Digital Image Processing, ICDIP 2022
编辑Xudong Jiang, Wenbing Tao, Deze Zeng, Yi Xie
出版商SPIE
ISBN(电子版)9781510657564
DOI
出版状态已出版 - 2022
活动14th International Conference on Digital Image Processing, ICDIP 2022 - Wuhan, 中国
期限: 20 5月 202223 5月 2022

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
12342
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议14th International Conference on Digital Image Processing, ICDIP 2022
国家/地区中国
Wuhan
时期20/05/2223/05/22

指纹

探究 'RHDDNet: Multi-label Classification-Based Detection of Image Hybrid Distortions' 的科研主题。它们共同构成独一无二的指纹。

引用此

Dou, B., Li, H., & Hou, S. (2022). RHDDNet: Multi-label Classification-Based Detection of Image Hybrid Distortions. 在 X. Jiang, W. Tao, D. Zeng, & Y. Xie (编辑), Fourteenth International Conference on Digital Image Processing, ICDIP 2022 文章 123421S (Proceedings of SPIE - The International Society for Optical Engineering; 卷 12342). SPIE. https://doi.org/10.1117/12.2643514