RGB-D visual odometry with point and line features in dynamic environment

Shuai Wang*, Baoling Han

*此作品的通讯作者

科研成果: 期刊稿件会议文章同行评审

2 引用 (Scopus)

摘要

Vision-based simultaneous localization and mapping (SLAM) technology is the key to realize autonomous navigation of mobile robots. When the robot is in an unfamiliar environment, it usually uses the point features of the surrounding environment to estimate its pose. However, if the feature information in the environment is not rich and there are many dynamic objects, the camera trajectory cannot be accurately estimated. To this end, this paper proposed an RGB-D visual odometry that combines point features and line features simultaneously. The dynamic line features are eliminated by calculating the static weight of the line features, and the camera pose is estimated based on the point features and the remaining line features. Compared with other feature-based SLAM systems, the performance and accuracy of systematic pose estimation can be improved in the absence of feature points or dynamic environments.

源语言英语
文章编号012126
期刊Journal of Physics: Conference Series
1303
1
DOI
出版状态已出版 - 2 9月 2019
活动2nd International Conference on Mechanical, Electric and Industrial Engineering, MEIE 2019 - Hangzhou, 中国
期限: 25 5月 201927 5月 2019

指纹

探究 'RGB-D visual odometry with point and line features in dynamic environment' 的科研主题。它们共同构成独一无二的指纹。

引用此