TY - GEN
T1 - Revisiting Unsupervised Local Descriptor Learning
AU - Wang, Wufan
AU - Zhang, Lei
AU - Huang, Hua
N1 - Publisher Copyright:
© 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - Constructing accurate training tuples is crucial for unsupervised local descriptor learning, yet challenging due to the absence of patch labels. The state-of-the-art approach constructs tuples with heuristic rules, which struggle to precisely depict real-world patch transformations, in spite of enabling fast model convergence. A possible solution to alleviate the problem is the clustering-based approach, which can capture realistic patch variations and learn more accurate class decision boundaries, but suffers from slow model convergence. This paper presents HybridDesc, an unsupervised approach that learns powerful local descriptor models with fast convergence speed by combining the rule-based and clustering-based approaches to construct training tuples. In addition, Hybrid-Desc also contributes two concrete enhancing mechanisms: (1) a Differentiable Hyperparameter Search (DHS) strategy to find the optimal hyperparameter setting of the rule-based approach so as to provide accurate prior for the clustering-based approach, (2) an On-Demand Clustering (ODC) method to reduce the clustering overhead of the clustering-based approach without eroding its advantage. Extensive experimental results show that HybridDesc can efficiently learn local descriptors that surpass existing unsupervised local descriptors and even rival competitive supervised ones.
AB - Constructing accurate training tuples is crucial for unsupervised local descriptor learning, yet challenging due to the absence of patch labels. The state-of-the-art approach constructs tuples with heuristic rules, which struggle to precisely depict real-world patch transformations, in spite of enabling fast model convergence. A possible solution to alleviate the problem is the clustering-based approach, which can capture realistic patch variations and learn more accurate class decision boundaries, but suffers from slow model convergence. This paper presents HybridDesc, an unsupervised approach that learns powerful local descriptor models with fast convergence speed by combining the rule-based and clustering-based approaches to construct training tuples. In addition, Hybrid-Desc also contributes two concrete enhancing mechanisms: (1) a Differentiable Hyperparameter Search (DHS) strategy to find the optimal hyperparameter setting of the rule-based approach so as to provide accurate prior for the clustering-based approach, (2) an On-Demand Clustering (ODC) method to reduce the clustering overhead of the clustering-based approach without eroding its advantage. Extensive experimental results show that HybridDesc can efficiently learn local descriptors that surpass existing unsupervised local descriptors and even rival competitive supervised ones.
UR - http://www.scopus.com/inward/record.url?scp=85167984233&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85167984233
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 2680
EP - 2688
BT - AAAI-23 Technical Tracks 3
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI press
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -