Retrieving forest canopy elements clumping index using icesat glas lidar data

Lei Cui, Ziti Jiao*, Kaiguang Zhao, Mei Sun, Yadong Dong, Siyang Yin, Xiaoning Zhang, Jing Guo, Rui Xie, Zidong Zhu, Sijie Li, Yidong Tong

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

Clumping index (CI) is a canopy structural variable important for modeling the terrestrial biosphere, but its retrieval from remote sensing data remains one of the least reliable. The majority of regional or global CI products available so far were generated from multiangle optical reflectance data. However, these reflectance-based estimates have well-known limitations, such as the mere use of a linear relationship between the normalized difference hotspot and darkspot (NDHD) and CI, uncertainties in bidirectional reflectance distribution function (BRDF) models used to calculate the NDHD, and coarse spatial resolutions (e.g., hundreds of meters to several kilometers). To remedy these limitations and develop alternative methods for large-scale CI mapping, here we explored the use of spaceborne lidar—the Geoscience Laser Altimeter System (GLAS)—and proposed a semi-physical algorithm to estimate CI at the footprint level. Our algorithm was formulated to leverage the full vertical canopy profile information of the GLAS full-waveform data; it converted raw wave-forms to forest canopy gap distributions and gap fractions of random canopies, which was used to estimate CI based on the radiative transfer theory and a revised Beer–Lambert model. We tested our algorithm over two areas in China—the Saihanba National Forest Park and Heilongjiang Prov-ince—and assessed its relative accuracies against field-measured CI and MODIS CI products. We found that reliable estimation of CI was possible only for GLAS waveforms with high signal-to-noise ratios (e.g., >65) and at gentle slopes (e.g., <12°). Our GLAS-based CI estimates for high-quality waveforms compared well to field-based CI (i.e., R2 = 0.72, RMSE = 0.07, and bias = 0.02), but they showed less correlation to MODIS CI (e.g., R2 = 0.26, RMSE = 0.12, and bias = 0.04). The difference highlights the impact of the scale effect in conducting comparisons of products with huge differ-ences resolution. Overall, our analyses represent the first attempt to use spaceborne lidar to retrieve high-resolution forest CI and our algorithm holds promise for mapping CI globally.

源语言英语
文章编号948
页(从-至)1-22
页数22
期刊Remote Sensing
13
5
DOI
出版状态已出版 - 1 3月 2021
已对外发布

指纹

探究 'Retrieving forest canopy elements clumping index using icesat glas lidar data' 的科研主题。它们共同构成独一无二的指纹。

引用此