Residual Depth Feature-Extraction Network for Infrared Small-Target Detection

Lizhe Wang, Yanmei Zhang*, Yanbing Xu, Ruixin Yuan, Shengyun Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

Deep-learning methods have exhibited exceptional performance in numerous target-detection domains, and their application is steadily expanding to include infrared small-target detection as well. However, the effect of existing deep-learning methods is weakened due to the lack of texture information and the low signal-to-noise ratio of infrared small-target images. To detect small targets in infrared images with limited information, a depth feature-extraction network based on a residual module is proposed in this paper. First, a global attention guidance enhancement module (GAGEM) is used to enhance the original infrared small target image in a single frame, which considers the global and local features. Second, this paper proposes a depth feature-extraction module (DFEM) for depth feature extraction. Our IRST-Involution adds the attention mechanism to the classic Involution module and combines it with the residual module for the feature extraction of the backbone network. Finally, the feature pyramid with self-learning weight parameters is used for feature fusion. The comparative experiments on three public datasets demonstrate that our proposed infrared small-target detection algorithm exhibits higher detection accuracy and better robustness.

源语言英语
文章编号2568
期刊Electronics (Switzerland)
12
12
DOI
出版状态已出版 - 6月 2023

指纹

探究 'Residual Depth Feature-Extraction Network for Infrared Small-Target Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此