TY - JOUR
T1 - Research progress on geosynchronous synthetic aperture radar
AU - Hu, Cheng
AU - Chen, Zhiyang
AU - Li, Yuanhao
AU - Dong, Xichao
AU - Hobbs, Stephen
N1 - Publisher Copyright:
© 2021
PY - 2021/5
Y1 - 2021/5
N2 - Based on its ability to obtain two-dimensional (2D) high-resolution images in all-time and all-weather conditions, spaceborne synthetic aperture radar (SAR) has become an important remote sensing technique and the study of such systems has entered a period of vigorous development. Advanced imaging modes such as radar interferometry, tomography, and multi-static imaging, have been demonstrated. However, current in-orbit spaceborne SARs, which all operate in low Earth orbits, have relatively long revisit times ranging from several days to dozens of days, restricting their temporal sampling rate. Geosynchronous SAR (GEO SAR) is an active research area because it provides significant new capability, especially its much-improved temporal sampling. This paper reviews the research progress of GEO SAR technologies in detail. Two typical orbit schemes are presented, followed by the corresponding key issues, including system design, echo focusing, main disturbance factors, repeat-track interferometry, etc, inherent to these schemes. Both analysis and solution research of the above key issues are described. GEO SAR concepts involving multiple platforms are described, including the GEO SAR constellation, GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR, and formation flying GEO SAR (FF-GEO SAR). Due to the high potential of FF-GEO SAR for three-dimensional (3D) deformation retrieval and coherence-based SAR tomography (TomoSAR), we have recently carried out some research related to FF-GEO SAR. This research, which is also discussed in this paper, includes developing a formation design method and an improved TomoSAR processing algorithm. It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future.
AB - Based on its ability to obtain two-dimensional (2D) high-resolution images in all-time and all-weather conditions, spaceborne synthetic aperture radar (SAR) has become an important remote sensing technique and the study of such systems has entered a period of vigorous development. Advanced imaging modes such as radar interferometry, tomography, and multi-static imaging, have been demonstrated. However, current in-orbit spaceborne SARs, which all operate in low Earth orbits, have relatively long revisit times ranging from several days to dozens of days, restricting their temporal sampling rate. Geosynchronous SAR (GEO SAR) is an active research area because it provides significant new capability, especially its much-improved temporal sampling. This paper reviews the research progress of GEO SAR technologies in detail. Two typical orbit schemes are presented, followed by the corresponding key issues, including system design, echo focusing, main disturbance factors, repeat-track interferometry, etc, inherent to these schemes. Both analysis and solution research of the above key issues are described. GEO SAR concepts involving multiple platforms are described, including the GEO SAR constellation, GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR, and formation flying GEO SAR (FF-GEO SAR). Due to the high potential of FF-GEO SAR for three-dimensional (3D) deformation retrieval and coherence-based SAR tomography (TomoSAR), we have recently carried out some research related to FF-GEO SAR. This research, which is also discussed in this paper, includes developing a formation design method and an improved TomoSAR processing algorithm. It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future.
KW - Disturbance factors
KW - Echo focusing
KW - Formation flying
KW - Geosynchronous synthetic aperture radar (GEO SAR)
KW - Orbit scheme
UR - http://www.scopus.com/inward/record.url?scp=85117213021&partnerID=8YFLogxK
U2 - 10.1016/j.fmre.2021.04.008
DO - 10.1016/j.fmre.2021.04.008
M3 - Review article
AN - SCOPUS:85117213021
SN - 2096-9457
VL - 1
SP - 346
EP - 363
JO - Fundamental Research
JF - Fundamental Research
IS - 3
ER -