TY - JOUR
T1 - Research on the kinetics characteristics and in-cylinder combustion of opposed rotary piston engine for different power output modes
AU - Wang, Yufeng
AU - Thawko, Andy
AU - Gharehghani, Ayat
AU - Gao, Jianbing
AU - Wang, Xiaochen
AU - Wang, Bingjian
AU - Qi, Mingxu
AU - Tian, Guohong
AU - Chen, Haibo
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/7/15
Y1 - 2024/7/15
N2 - As a new type of internal combustion engine, opposed rotary piston (ORP) engine has the advantages of simple structure and high working frequency, and can achieve high power density. Consequently, it stands as an ideal power source for hybrid power systems and unmanned aerial vehicles. The ORP engine has different power output modes, corresponding to different piston rotation and volume evolutions of combustion chamber. However, the effect of power output modes on kinetics characteristics and in-cylinder combustion of ORP engines are still uncovered. In this paper, the kinematic model of an ORP engine is established for scenarios involving power output by different shafts (Shaft 1 and Shaft 3). Meanwhile, the piston rotation patterns and cylinder volume variations are investigated correspondingly. Further, three-dimensional numerical model of the ORP engine is established, enabling analysis of in-cylinder combustion characteristics, engine performance, as well as nitrogen oxides (NOx) emissions. The results indicate that the volume variations of all cylinders follow a consistent pattern under the power output by Shaft 3. A pair of opposed cylinders features longer durations of intake and expansion strokes, and shorter durations of compression and exhaust strokes, the other pair of combustion chambers is the opposite under the power output by Shaft 1. The engine demonstrates a charging efficiency of 95.36 %, with corresponding indicated thermal efficiency and indicated power output of 38.08 % and 40.9 kW, respectively. The two adjacent cylinders present significantly different operation processes in the case of the power output by Shaft 1, achieving charging efficiencies of 94.29 % and 89.11 %, respectively, with the indicated thermal efficiency of 34.49 % and 31.60 %. The corresponding minimum indicated specific fuel consumption under the two power output modes are 211.7 g/kW∙h and 243.7 g/kW∙h, respectively, accompanied by NOx emission factors of 25.3 g/kW∙h and 17.6 g/kW∙h. With the given range of ignition timing, a trade-off relationship exists between the engine performance and NOx emissions. The power density of the case of power output by Shaft 3 is superior to that of Shaft 1.
AB - As a new type of internal combustion engine, opposed rotary piston (ORP) engine has the advantages of simple structure and high working frequency, and can achieve high power density. Consequently, it stands as an ideal power source for hybrid power systems and unmanned aerial vehicles. The ORP engine has different power output modes, corresponding to different piston rotation and volume evolutions of combustion chamber. However, the effect of power output modes on kinetics characteristics and in-cylinder combustion of ORP engines are still uncovered. In this paper, the kinematic model of an ORP engine is established for scenarios involving power output by different shafts (Shaft 1 and Shaft 3). Meanwhile, the piston rotation patterns and cylinder volume variations are investigated correspondingly. Further, three-dimensional numerical model of the ORP engine is established, enabling analysis of in-cylinder combustion characteristics, engine performance, as well as nitrogen oxides (NOx) emissions. The results indicate that the volume variations of all cylinders follow a consistent pattern under the power output by Shaft 3. A pair of opposed cylinders features longer durations of intake and expansion strokes, and shorter durations of compression and exhaust strokes, the other pair of combustion chambers is the opposite under the power output by Shaft 1. The engine demonstrates a charging efficiency of 95.36 %, with corresponding indicated thermal efficiency and indicated power output of 38.08 % and 40.9 kW, respectively. The two adjacent cylinders present significantly different operation processes in the case of the power output by Shaft 1, achieving charging efficiencies of 94.29 % and 89.11 %, respectively, with the indicated thermal efficiency of 34.49 % and 31.60 %. The corresponding minimum indicated specific fuel consumption under the two power output modes are 211.7 g/kW∙h and 243.7 g/kW∙h, respectively, accompanied by NOx emission factors of 25.3 g/kW∙h and 17.6 g/kW∙h. With the given range of ignition timing, a trade-off relationship exists between the engine performance and NOx emissions. The power density of the case of power output by Shaft 3 is superior to that of Shaft 1.
KW - Engine performance
KW - In-cylinder combustion
KW - Kinematic analysis
KW - Opposed rotary piston engine
KW - Power output modes
UR - http://www.scopus.com/inward/record.url?scp=85193425957&partnerID=8YFLogxK
U2 - 10.1016/j.applthermaleng.2024.123362
DO - 10.1016/j.applthermaleng.2024.123362
M3 - Article
AN - SCOPUS:85193425957
SN - 1359-4311
VL - 249
JO - Applied Thermal Engineering
JF - Applied Thermal Engineering
M1 - 123362
ER -