摘要
A noise insensitive SVM multi-class classifier is proposed. The algorithm is used to analyze data characteristic in the high-dimension data set. Firstly a noise insensitive SVM two-class classifier is built to tackle the noise problem. On the basis of standard SVM, constraint distance is also considered to determine the optimal separating hyperplane. According to these, the noise insensitive SVM multi-class classifier is designed with edited SVM, confidence interval and one-against-one method.
源语言 | 英语 |
---|---|
主期刊名 | Proceedings of 2004 International Conference on Machine Learning and Cybernetics |
页 | 3234-3237 |
页数 | 4 |
出版状态 | 已出版 - 2004 |
活动 | Proceedings of 2004 International Conference on Machine Learning and Cybernetics - Shanghai, 中国 期限: 26 8月 2004 → 29 8月 2004 |
出版系列
姓名 | Proceedings of 2004 International Conference on Machine Learning and Cybernetics |
---|---|
卷 | 5 |
会议
会议 | Proceedings of 2004 International Conference on Machine Learning and Cybernetics |
---|---|
国家/地区 | 中国 |
市 | Shanghai |
时期 | 26/08/04 → 29/08/04 |
指纹
探究 'Research on noise insensitive SVM based multi-class classifier' 的科研主题。它们共同构成独一无二的指纹。引用此
Li, K., & Liu, Y. S. (2004). Research on noise insensitive SVM based multi-class classifier. 在 Proceedings of 2004 International Conference on Machine Learning and Cybernetics (页码 3234-3237). (Proceedings of 2004 International Conference on Machine Learning and Cybernetics; 卷 5).