Research on fault diagnosis of neural network based on bee colony algorithm optimization in gun control system

Yingshun Li, Yongjian Liu, Xiaojian Yi

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Aiming at the problems of large subjectivity and inaccurate diagnosis results in the fault diagnosis of tank gun control system, the fault diagnosis method based on improved artificial bee colony is studied. Combined with the improved artificial bee colony algorithm and BP neural network, a BP neural network algorithm based on improved bee colony optimization algorithm is formed and the model of the algorithm is established. And through the use of MATLAB simulation of computer programs, compared with the BP neural network algorithm without optimization, the experiment is summarized. The results show that the system can give fault diagnosis results more accurately, which helps to improve the maintenance efficiency and reliability of the tank gun control system.

源语言英语
主期刊名Proceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
编辑Chuan Li, Shaohui Zhang, Jianyu Long, Diego Cabrera, Ping Ding
出版商Institute of Electrical and Electronics Engineers Inc.
153-159
页数7
ISBN(电子版)9781728101996
DOI
出版状态已出版 - 8月 2019
活动2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019 - Beijing, 中国
期限: 15 8月 201917 8月 2019

出版系列

姓名Proceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019

会议

会议2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
国家/地区中国
Beijing
时期15/08/1917/08/19

指纹

探究 'Research on fault diagnosis of neural network based on bee colony algorithm optimization in gun control system' 的科研主题。它们共同构成独一无二的指纹。

引用此