Research on Fault Diagnosis Modeling Methods Driven by Route QAR Data

Yinlong Fang, Feng Jin, Nan Yang, Lu Yang, Guigang Zhang, Jian Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Diagnosing flight route faults based on QAR data is crucial for preventing flight accidents and reducing maintenance costs. This paper presents a method for diagnosing flight route faults using a Long Short-Term Memory Network and Decision tree algorithm (LSTM-DT). We used feature optimization algorithms to process the original QAR data, including rolling window operation and principal component analysis. The optimized features were then used to establish an LSTM anomaly detection model to identify abnormal points of the faulty route. We established a decision tree fault diagnosis model using these detected outliers to determine the corresponding fault types. When tested with real airline data, the fault diagnosis accuracy of this method reached 99.45%, confirming its effectiveness.

源语言英语
主期刊名Proceedings of 2024 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2024
编辑Yongqiang Liu, Xiaohui Gu, Diego Cabrera, Baosen Wang, Mauricio Villacis, Chuan Li
出版商Institute of Electrical and Electronics Engineers Inc.
163-169
页数7
ISBN(电子版)9798350388855
DOI
出版状态已出版 - 2024
活动2024 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2024 - Shijiazhuang, 中国
期限: 26 7月 202428 7月 2024

出版系列

姓名Proceedings of 2024 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2024

会议

会议2024 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2024
国家/地区中国
Shijiazhuang
时期26/07/2428/07/24

指纹

探究 'Research on Fault Diagnosis Modeling Methods Driven by Route QAR Data' 的科研主题。它们共同构成独一无二的指纹。

引用此