Research on comprehensive fault prediction model of tank fire control system based on machine learning

Yingshun Li, Wei Jia, Xiaojian Yi

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Due to the insufficient fault information of the tank fire control system and the complex fault characteristics, and the fault signal has the characteristics of high dimension, small sample and nonlinearity, the fault prediction of the fire control system is difficult and the reliability is low. In order to solve such problems, two intelligent predictive models for fire control systems for machine learning algorithms are proposed: multi-step prediction model of fire control system performance trend based on particle swarm improved support vector regression machine, and the fault state prediction model based on support vector classifier , constructs a failure decision function and performs intelligent prediction combined with lateral prediction and longitudinal prediction to improve the reliability of fault prediction. The two models were verified by the power module of the fire control computer and sensor subsystem in a certain type of tank fire control system. The experimental results show that the proposed fire control system fault prediction model has high accuracy and practicability.

源语言英语
主期刊名Proceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
编辑Chuan Li, Shaohui Zhang, Jianyu Long, Diego Cabrera, Ping Ding
出版商Institute of Electrical and Electronics Engineers Inc.
892-897
页数6
ISBN(电子版)9781728101996
DOI
出版状态已出版 - 8月 2019
活动2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019 - Beijing, 中国
期限: 15 8月 201917 8月 2019

出版系列

姓名Proceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019

会议

会议2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
国家/地区中国
Beijing
时期15/08/1917/08/19

指纹

探究 'Research on comprehensive fault prediction model of tank fire control system based on machine learning' 的科研主题。它们共同构成独一无二的指纹。

引用此