TY - JOUR
T1 - Reliable Integrated ASC and DYC Control of All-Wheel-Independent-Drive Electric Vehicles over CAN Using a Co-Design Methodology
AU - Cao, Wanke
AU - Wu, Yingshuang
AU - Zhou, Enfei
AU - Li, Jianwei
AU - Liu, Jizhi
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2019
Y1 - 2019
N2 - This paper deals with the negative effects of the in-vehicle network on the integrated anti-slip control (ASC) and direct yaw-moment control (DYC) of all-wheel-independent-drive electric vehicles (AWID-EVs). In the integrated control design of the modern AWID-EVs, increasing control components, e.g., sensors, controllers, and actuators, are usually connected via an in-vehicle network, such as a controller area network (CAN), rather than the traditional point-to-point communication. However, the application of CAN would also bring about unexpected problems, e.g., signal asynchrony, multiple-package transmission, and signal delay, which may degrade the control performance and even destroy the stability of the system. This paper presents a co-design methodology to deal with all these challenges caused by CAN and guarantees a satisfactory vehicle dynamics performance. First, a hierarchical structure is designed for the integrated ASC and DYC control of AWID-EVs over CAN, and an active torque distribution strategy based on a well-known maximum transmissible torque estimation approach is adopted. Then, a scheduling-based communication idea is introduced to deal with all these problems caused by CAN. Third, a Lyapunov-based pole assignment theory is applied to estimate the parameter values in the scheduling design and to guarantee the satisfactory dynamic performance of the control system. A generalized linear quadratic regulator controller is designed for the system synthesis to ensure the tracking control of the vehicle. Finally, simulations and preliminary hardware-in-loop tests indicate that the proposed co-design methodology can deal with the negative effects of the in-vehicle network and ensure reliable vehicle dynamics performance.
AB - This paper deals with the negative effects of the in-vehicle network on the integrated anti-slip control (ASC) and direct yaw-moment control (DYC) of all-wheel-independent-drive electric vehicles (AWID-EVs). In the integrated control design of the modern AWID-EVs, increasing control components, e.g., sensors, controllers, and actuators, are usually connected via an in-vehicle network, such as a controller area network (CAN), rather than the traditional point-to-point communication. However, the application of CAN would also bring about unexpected problems, e.g., signal asynchrony, multiple-package transmission, and signal delay, which may degrade the control performance and even destroy the stability of the system. This paper presents a co-design methodology to deal with all these challenges caused by CAN and guarantees a satisfactory vehicle dynamics performance. First, a hierarchical structure is designed for the integrated ASC and DYC control of AWID-EVs over CAN, and an active torque distribution strategy based on a well-known maximum transmissible torque estimation approach is adopted. Then, a scheduling-based communication idea is introduced to deal with all these problems caused by CAN. Third, a Lyapunov-based pole assignment theory is applied to estimate the parameter values in the scheduling design and to guarantee the satisfactory dynamic performance of the control system. A generalized linear quadratic regulator controller is designed for the system synthesis to ensure the tracking control of the vehicle. Finally, simulations and preliminary hardware-in-loop tests indicate that the proposed co-design methodology can deal with the negative effects of the in-vehicle network and ensure reliable vehicle dynamics performance.
KW - All-wheel-independent-drive electric vehicle (AWID-EV)
KW - anti-slip control (ASC)
KW - co-design of scheduling and control
KW - controller area network (CAN)
KW - direct yaw-moment control (DYC)
UR - http://www.scopus.com/inward/record.url?scp=85058875986&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2018.2886994
DO - 10.1109/ACCESS.2018.2886994
M3 - Article
AN - SCOPUS:85058875986
SN - 2169-3536
VL - 7
SP - 6047
EP - 6059
JO - IEEE Access
JF - IEEE Access
M1 - 8579134
ER -