Reliability-Aware and Energy-Efficient Workflow Scheduling in IaaS Clouds

Lingjuan Ye, Yuanqing Xia*, Siyuan Tao, Ce Yan, Runze Gao, Yufeng Zhan

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

15 引用 (Scopus)

摘要

Nowadays, more and more workflow applications with different computing requirements are migrated to clouds and executed with cloud resources. Workflow scheduling becomes a critical problem in the cloud environment, which focuses on meeting various quality of service (QoS) constraints. Workflow reliability and energy consumption are two essential parts in clouds and minimizing energy consumption for scheduling workflow with the reliability constraint is a challenging issue. In response to the challenge, we propose a workflow scheduling algorithm named REWS to reduce energy consumption and satisfy workflow reliability constraints. In REWS, a new sub-reliability constraint prediction strategy is adopted to break down the workflow reliability constraint to task sub-reliability constraints and the effectiveness of this strategy is proved. Moreover, an update method is adopted to adjust the task sub-reliability constraint for reducing energy consumption. In addition, a brief system framework which consists of five parts: workflow analyzer, reliability decomposer, resource manager, workflow scheduler and feedback processer is built to support the algorithm implementation of REWS. We conduct the experiments using both synthetic data and real-world data to evaluate the proposed REWS approach. The results demonstrate the superiority of REWS as compared with the state-of-the-art algorithms. Note to Practitioners - Workflow scheduling is a challenging issue in emerging trends of the cloud environment that focuses on satisfying various QoS constraints. In this paper, we investigate a reliability-aware and energy-efficient workflow scheduling problem in cloud computing. A novel workflow scheduling algorithm called REWS, is designed to reduce the energy consumption and meet the workfolw reliability constraint. The basic idea of REWS is to divide the workflow reliability constraint into task sub-reliability constraints and schedule tasks with an energy-efficient scheduling strategy. We conduct the experiments to evaluate the proposed REWS and the results demonstrate that REWS outperforms the state-of-the-art algorithms.

源语言英语
页(从-至)2156-2169
页数14
期刊IEEE Transactions on Automation Science and Engineering
20
3
DOI
出版状态已出版 - 1 7月 2023

指纹

探究 'Reliability-Aware and Energy-Efficient Workflow Scheduling in IaaS Clouds' 的科研主题。它们共同构成独一无二的指纹。

引用此