Relativistic Artificial Molecules Realized by Two Coupled Graphene Quantum Dots

Zhong Qiu Fu, Yueting Pan, Jiao Jiao Zhou, Ke Ke Bai, Dong Lin Ma, Yu Zhang, Jia Bin Qiao, Hua Jiang*, Haiwen Liu*, Lin He*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

16 引用 (Scopus)

摘要

Coupled quantum dots (QDs), usually referred to as artificial molecules, are important not only in exploring fundamental physics of coupled quantum objects but also in realizing advanced QD devices. However, previous studies have been limited to artificial molecules with nonrelativistic Fermions. Here, we show that relativistic artificial molecules can be realized when two circular graphene QDs are coupled to each other. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we observe the formation of bonding and antibonding states of the relativistic artificial molecule and directly visualize these states of the two coupled graphene QDs. The formation of the relativistic molecular states strongly alters distributions of massless Dirac Fermions confined in the graphene QDs. Moreover, our experiment demonstrates that the degeneracy of different angular-momentum states in the relativistic artificial molecule can be further lifted by external magnetic fields. Then, both the bonding and antibonding states are split into two peaks.

源语言英语
页(从-至)6738-6743
页数6
期刊Nano Letters
20
9
DOI
出版状态已出版 - 9 9月 2020
已对外发布

指纹

探究 'Relativistic Artificial Molecules Realized by Two Coupled Graphene Quantum Dots' 的科研主题。它们共同构成独一无二的指纹。

引用此