TY - JOUR
T1 - Relatively compact sets on abstract wiener space
AU - Zhang, Xi Cheng
PY - 2005/8
Y1 - 2005/8
N2 - In this note, we obtain a sufficient and necessary condition for a set in an abstract Wiener space (X, H, μ) to be relatively compact in L 2(X, μ). Meanwhile, we give a sufficient condition for relative compactness in L p (X, μ) for p > 1. We also provide an example of Da Prato-Malliavin-Nualart to show the result.
AB - In this note, we obtain a sufficient and necessary condition for a set in an abstract Wiener space (X, H, μ) to be relatively compact in L 2(X, μ). Meanwhile, we give a sufficient condition for relative compactness in L p (X, μ) for p > 1. We also provide an example of Da Prato-Malliavin-Nualart to show the result.
KW - Abstract Wiener space
KW - Mallinvin calculus
KW - Relatively compact sets
UR - http://www.scopus.com/inward/record.url?scp=23044516303&partnerID=8YFLogxK
U2 - 10.1007/s10114-005-0529-1
DO - 10.1007/s10114-005-0529-1
M3 - Article
AN - SCOPUS:23044516303
SN - 1439-8516
VL - 21
SP - 819
EP - 822
JO - Acta Mathematica Sinica, English Series
JF - Acta Mathematica Sinica, English Series
IS - 4
ER -