摘要
In this note, we obtain a sufficient and necessary condition for a set in an abstract Wiener space (X, H, μ) to be relatively compact in L 2(X, μ). Meanwhile, we give a sufficient condition for relative compactness in L p (X, μ) for p > 1. We also provide an example of Da Prato-Malliavin-Nualart to show the result.
源语言 | 英语 |
---|---|
页(从-至) | 819-822 |
页数 | 4 |
期刊 | Acta Mathematica Sinica, English Series |
卷 | 21 |
期 | 4 |
DOI | |
出版状态 | 已出版 - 8月 2005 |
已对外发布 | 是 |
指纹
探究 'Relatively compact sets on abstract wiener space' 的科研主题。它们共同构成独一无二的指纹。引用此
Zhang, X. C. (2005). Relatively compact sets on abstract wiener space. Acta Mathematica Sinica, English Series, 21(4), 819-822. https://doi.org/10.1007/s10114-005-0529-1