Relatively compact sets on abstract wiener space

Xi Cheng Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

In this note, we obtain a sufficient and necessary condition for a set in an abstract Wiener space (X, H, μ) to be relatively compact in L 2(X, μ). Meanwhile, we give a sufficient condition for relative compactness in L p (X, μ) for p > 1. We also provide an example of Da Prato-Malliavin-Nualart to show the result.

源语言英语
页(从-至)819-822
页数4
期刊Acta Mathematica Sinica, English Series
21
4
DOI
出版状态已出版 - 8月 2005
已对外发布

指纹

探究 'Relatively compact sets on abstract wiener space' 的科研主题。它们共同构成独一无二的指纹。

引用此